# Lecture 10: Herding behaviour and market psychology

The last lecture introduced the possible effects of psychology of analysts and investors in influencing the "anomalies" that arise in markets. This lecture looks at "herding" and market psychology of institutional investors and asset managers in more detail, and seeks to assess its potential link to financial turbulence in securities markets.

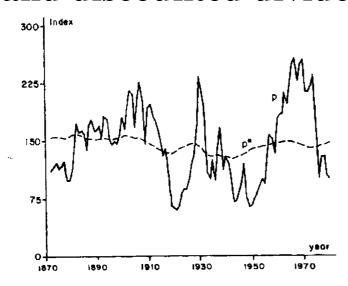
## Should we expect volatility to increase with institutionalization?

Widely suggested it does, but:

- Better information than individuals
- Liquidity generation (diverse views/liabilities) and low transactions costs (large trades)
- ...favour less volatility (prices move rapidly to new equilibrium, volatile only if fundamentals volatile)
- No trend increase in volatility apparent
- Higher volatility where institutions less important
- Stabilising elements of securitized financial system (distance from safety net, better diversification opportunities)
- Cross border flows and efficiency (mover overvalued to undervalued)

### MARKET PRICE VOLATILITY (STANDARD DEVIATION OF MONTHLY PERCENTAGE CHANGES)

|                   |                       | 1965- | 1970- | 1975- | 1980- | 1985- | 1990- | 1996- |
|-------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
|                   |                       | 1970  | 1975  | 1980  | 1985  | 1990  | 1995  | 1999  |
| United<br>Kingdom | Bond total returns    | 1.2   | 3.4   | 3.5   | 2.6   | 2.4   | 1.9   | 2.8   |
|                   | Share prices          | 4.0   | 8.7   | 5.1   | 3.3   | 5.2   | 3.3   | 3.4   |
|                   | Exchange rates        | 1.2   | 1.3   | 1.9   | 2.0   | 1.8   | 1.7   | 1.7   |
|                   | Industrial production | 1.0   | 2.4   | 2.1   | 1.3   | 1.3   | 1.0   | 0.7   |
| United<br>States  | Bond total returns    | 2.0   | 1.7   | 2.5   | 3.0   | 2.3   | 1.8   | 3.8   |
|                   | Share prices          | 3.4   | 4.3   | 3.2   | 3.5   | 3.9   | 2.2   | 3.6   |
|                   | Exchange rates        | 0.2   | 1.3   | 1.2   | 1.8   | 1.6   | 1.6   | 1.6   |
|                   | Industrial production | 0.8   | 1.2   | 0.8   | 0.9   | 0.6   | 0.5   | 0.5   |
| Germany           | Bond total returns    | 1.1   | 1.4   | 1.7   | 1.6   | 1.5   | 1.4   | 3.3   |
|                   | Share prices          | 4.3   | 4.3   | 2.5   | 3.2   | 6.0   | 3.6   | 5.1   |
|                   | Exchange rates        | 0.9   | 1.6   | 1.1   | 1.1   | 0.8   | 1.0   | 0.6   |
|                   | Industrial production | 2.0   | 1.7   | 1.7   | 2.5   | 1.6   | 1.4   | 1.4   |
| Japan             | Bond total returns    | 0.1   | 0.6   | 2.1   | 2.1   | 3.5   | 1.9   | 14.6  |
|                   | Share prices          | 3.3   | 4.7   | 1.9   | 2.8   | 5.2   | 5.0   | 4.9   |
|                   | Exchange rates        | 0.2   | 1.6   | 2.6   | 2.1   | 2.5   | 2.5   | 2.9   |
|                   | Industrial production | 1.1   | 1.5   | 1.3   | 1.2   | 1.4   | 1.6   | 2.2   |
| Canada            | Bond total returns    | 1.2   | 1.5   | 1.9   | 3.4   | 2.1   | 2.0   | 4.0   |
|                   | Share prices          | 4.0   | 5.1   | 5.1   | 5.2   | 4.7   | 3.0   | 4.6   |
|                   | Exchange rates        | 0.5   | 0.7   | 1.3   | 0.9   | 1.1   | 1.1   | 0.6   |
|                   | Industrial production | 0.9   | 1.4   | 1.2   | 1.5   | 0.9   | 0.7   | 1.0   |
| France            | Bond total returns    | 0.7   | 1.0   | 1.6   | 1.9   | 2.2   | 1.7   | 2.8   |
|                   | Share prices          | 3.9   | 4.0   | 4.2   | 4.8   | 6.2   | 4.0   | 4.7   |
|                   | Exchange rates        | 1.1   | 1.3   | 1.1   | 1.2   | 0.7   | 0.9   | 0.5   |
|                   | Industrial production | 6.1   | 2.0   | 1.7   | 1.3   | 1.5   | 1.2   | 1.1   |
| Italy             | Bond total returns    | 0.9   | 1.8   | 1.9   | 2.0   | 1.9   | 2.6   | 3.3   |
|                   | Share prices          | 3.8   | 7.3   | 6.2   | 7.0   | 7.0   | 5.7   | 6.3   |
|                   | Exchange rates        | 0.3   | 1.3   | 1.7   | 0.7   | 0.6   | 2.2   | 0.8   |
|                   | Industrial production | 2.3   | 3.9   | 3.0   | 2.5   | 3.2   | 3.5   | 1.4   |


# Higher volatility where markets less developed

# Some evidence in favour of the hypothesis

- Excess volatility of stock prices (Shiller, Bulkley and Tonks), relative to actual outturns
- Variance bounds test comparing forecasts and outturns

 $P_t$  = share price  $P_t^*$  = future dividends constructed ex post  $P_t^*$  =  $P_t$  +  $P_t$ 

## Shillers chart of real share prices and discounted dividends



- Price changes react to unexpected changes in volatility (Haugen)
- Unexpected changes in economic and financial variables explain only 18% of differences in returns (Cutler et al) but could be time varying risk premia which may themselves be predictable

- Limits to arbitrage and role of noise traders may help generate excess volatility
- Positive relation of institutional ownership to volatility (Sias) allowing for capitalization, i.e. within deciles, allowing for fact larger shares less volatile and institutions hold more of larger stocks
- Although rising institutional holdings do not generate excess returns, market wide herding not ruled out (Lakonishok et al)

Regulating hedge funds may worsen the situation

# INSTITUTIONAL OWNERSHIP AND MARKET PRICE VOLATILITY IN THE UNITED STATES (NEW YORK STOCK EXCHANGE FIRMS, 1977–1991)

| Capitalization<br>Decile | Institutional<br>Holding (%) | Standard<br>Deviation of<br>Weekly Returns |
|--------------------------|------------------------------|--------------------------------------------|
| 1 (smallest)             | 7.6                          | 0.0646                                     |
| 2                        | 12.7                         | 0.0512                                     |
| 3                        | 17.2                         | 0.0488                                     |
| 4                        | 23.9                         | 0.047                                      |
| 5                        | 26.8                         | 0.0452                                     |
| 6                        | 31.2                         | 0.0426                                     |
| 7                        | 35.6                         | 0.0417                                     |
| 8                        | 40.9                         | 0.0397                                     |
| 9                        | 45.6                         | 0.0378                                     |
| 10 (largest)             | 47.5                         | 0.0353                                     |

Source:Sias

#### **Potential implications**

- Institutions amplify size of disturbances owing to their size and common behaviour
- Periodic rather than continuous hence not captured in long term average data
- "Herding" mimetic behaviour on the part of asset managers, which may generate market instability

## What is the role of incentives for portfolio managers?

- The issue of principal-agent problems, fundamental to investor/asset manager link
- Reputation and short mandates (Scharfstein and Stein) market takes into account not just returns but similarity to others' choices as good managers expected to get correlated signals
- Regular performance checks and following others (Benartzi and Thaler) consequence of not following others worse than of performing badly, so adopt short time horizons, copy others, avoid contrarian positions

- Information acquisition and market dynamics (Froot et al) if hold for short time, seek information others focus on as it enters market quickly, even if neglect own superior private information
- Herding of analysts (Olsen) reputation effect for them, which reinforces institutional herding
- Churning (transact often to generate commission)
- Risk management (herd out of equities when approach solvency limit)
- Style distinctions (investors shift en masse to style in vogue)
- Use of benchmarks (if replicate a capitalization based benchmark)
- Behaviour of households

#### **Information cascades**

- Information cascades (Shiller and Pound, Bikhchandani et al)
  - oInvestors have private information
  - oBut also react to others' actions, taking sequential decisions
  - oIf uninformed go first, an incorrect cascade may arise
  - oMay arise from accounting information, as signal noisy to company prospects
  - oSo financial disclosure ignored by the market

#### Contrarian and feedback trading

Feasibility of contrarian strategies (profiting from and offsetting herding) – limited for mutual funds, credit limits on hedge funds and herding incentives encouraged rather than contrarian approach for life insurers and pension funds (also increasingly binding solvency regulations)

Positive versus negative feedback trading

- Herding by institutions themselves due to biases in judgment, desire to avoid embarrassment, investment strategies (Cutler et al)
- Or provocation in others to take advantage of superior information and price leader status (de Long et al)

# What are the wider implications of herding behaviour for financial stability?

Basic reason is volatility and liquidity failure after periodic one-way-selling Of concern to asset managers not just authorities (e.g. if liquidity needs arise, makes active management more difficult, possible losses on leveraged investments)

Reasons for one-way selling

- Incentive based reasons
- Concentration of assets
- Fiduciary responsibility
- No interest in maintaining market functioning
- Time varying liquidity constraints on leveraged investors
- Less information than a bank for credit decisions

#### Price volatility in deep markets

Sharp price shifts following medium term deviation from fundamentals

- Examples 1987 crash, 1992/3 ERM crisis, bond market reversal of 1994
- Common features
  - oInstitutional investor involvement
  - Overreaction to fundamentals
  - Shock to confidence
  - oRapid and wholesale shifts between markets
- Risks posed to leveraged investors
- Adverse macroeconomic consequences

#### Example of 1987 crash

Buoyant investor expectations, leading to suspicion of a bubble

Impression/illusion of high liquidity "News" was not commensurate with

outcome

Portfolio insurance and index arbitrage interaction

Institutional investors heavily involved in selling, especially of

cross border holdings

Margin calls to traders of equity futures and options

Liquidity squeeze on brokers, threat of gridlock in payments and settlement Banks feared brokers were insolvent and were unwilling to expand credit Fed expanded liquidity to avoid systemic risk

Fear of another "Great Depression"
Inflation followed cut in interest rates

## Market liquidity failure in shallow markets

Debt securities markets that are thin "dry up" when institutions sell heavily. Conceptually similar to a bank run

- Examples Penn Central in 1970, Junk Bonds in 1989, Russia/LTCM case
- Self fulfilling expectations of collapsing liquidity
- Reaction of market makers to one way selling owing to
  - OUncertainty
  - OAsymmetric Information
  - oCollapses likely if return to market making low

## Example of market liquidity risks - Russia/LTCM

Market liquidity failure driven by asset managers Risk tolerance increased prior to crisis in long bull period Reversal to risk aversion after triggers – Russia, LTCM failure Flight to quality, collapse of issuance and liquidity - even in the deepest of markets Evidence of "herding" among investors and traders - market lacked "macro portfolio diversification" Long-term institutions unwilling to act in a contrarian manner Role of VaR and risk management – assume risk exogenous when endogenous to collective behaviour Risk of much wider systemic risk – so LTCM rescued and interest rates cut

# Reasons for concern over market liquidity failures

- Banks' active involvement
- Possible failure of investment bank
- Reliance on securities markets for liquidity
- Possible failure of derivatives markets
- Cost of raising debt for corporate sector (if banks unable to substitute)

## SELECTED EPISODES OF FINANCIAL INSTABILITY, 1970–1998

| Date   | Event                       | Main Feature                                         |  |  |  |  |  |
|--------|-----------------------------|------------------------------------------------------|--|--|--|--|--|
| 1970   | U.S. Penn Central           | Collapse of market liquidity and issuance            |  |  |  |  |  |
|        | Bankruptcy                  |                                                      |  |  |  |  |  |
| 1973   | U.K. secondary              | Bank failures following loan losses                  |  |  |  |  |  |
|        | banking                     |                                                      |  |  |  |  |  |
| 1974   | Herstatt (Germany)          | Bank failure following trading losses                |  |  |  |  |  |
| 1982   | LDC debt crisis             | Bank failures following loan losses                  |  |  |  |  |  |
| 1984   | Continental Illinois        | Bank failure following loan losses                   |  |  |  |  |  |
| 1005   | (U.S.)                      | Don't foilures following loss losses                 |  |  |  |  |  |
| 1985   | Canadian Regional<br>Banks  | Bank failures following loan losses                  |  |  |  |  |  |
| 1986   | FRN market                  | Collapse of market liquidity and issuance            |  |  |  |  |  |
| 1986   | U.S. thrifts                | Bank failures following loan losses                  |  |  |  |  |  |
| 1987   | Stock market crash          | Price volatility after shift in expectations         |  |  |  |  |  |
| 1989   | Collapse of U.S. junk bonds | Collapse of market liquidity and issuance            |  |  |  |  |  |
| 1989   | Australian banking problems | Bank failures following loan losses                  |  |  |  |  |  |
| 1990   | Swedish commercial          | Collapse of market liquidity and issuance            |  |  |  |  |  |
| 1990–  | Norwagian banking           | Pank failures fallowing loan lagges                  |  |  |  |  |  |
| 1990–  | Norwegian banking crisis    | Bank failures following loan losses                  |  |  |  |  |  |
| 1991–  | Finnish banking             | Bank failures following loan losses                  |  |  |  |  |  |
| 1992   | crisis                      | Bank failules following foan fosses                  |  |  |  |  |  |
| 1991–  | Swedish banking             | Bank failures following loan losses                  |  |  |  |  |  |
| 1992   | crisis                      |                                                      |  |  |  |  |  |
| 1992-6 | Japanese banking crisis     | Bank failures following loan losses                  |  |  |  |  |  |
| 1992   | ECU bond market             | Collapse of market liquidity and issuance            |  |  |  |  |  |
|        | collapse                    |                                                      |  |  |  |  |  |
| 1992-  | ERM crisis                  | Price volatility after shift in expectations         |  |  |  |  |  |
| 1993   |                             |                                                      |  |  |  |  |  |
| 1994   | Bond market reversal        | Price volatility after shift in expectations         |  |  |  |  |  |
| 1995   | Mexican crisis              | Price volatility after shift in expectations         |  |  |  |  |  |
| 1997   | Asian crisis                | Price volatility following shift in expectations and |  |  |  |  |  |
| 1000   | D : 10 : :                  | bank failures following loan losses.                 |  |  |  |  |  |
| 1998   | Russian default and LTCM    | Collapse of market liquidity and issuance            |  |  |  |  |  |

## Issues for emerging market economies

- Size of institutional flows overwhelms markets
- Evidence of increased serial correlation (Aitken)
- Deceleration of foreign inflows depresses prices (Froot et al)
- Underlying two step allocation by institutions (1) allocate to EMEs as a whole (2) to individuals countries, possibly with no focus on fundamentals
- Hence correlated judgments generating contagion – uninformed managers seek not to deviate from consensus, and all withdraw at once